Outline

• Lithium 101
• Lithium-Brine in Alberta
 ➢ History of Discovery
 ➢ Significance of Spatial Location within Alberta
 ➢ Theory – Source of Lithium in Alberta Brine
 ➢ Lithium–Brine Availability to Surface Explorers
• Mineral Resource Example: Canadian International Minerals Inc.
 ➢ Formation Water Sampling and Results
 ➢ NI 43-101 Mineral Resource Estimate
Lithium has a wide variety of uses:

- **Medical** (mood-stabilizer, bipolar disorder treatment, Alzheimer's and neurodegenerative diseases);
- **Engineering** (high-temperature lubricants and soaps, flux for welding/soldering, CO$_2$ scale prevention);
- **Electrical** (batteries, telecommunications);
- **Chemical** (desiccants, polymerisation and organic synthesis);
- **High strength-to-weight alloys** (high-performance aircraft parts);
- **Optics** (focal lenses, infrared and ultraviolet applications);
- **Rocketry** (propellant);
- **Nuclear** (fusion material in power plants and weaponry); and
- **Environment** (a substitute for less elements such as fluorine).
<table>
<thead>
<tr>
<th>Application</th>
<th>Lithium Carbonate Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell phone</td>
<td>3 g (0.1 oz)</td>
</tr>
<tr>
<td>Notebook</td>
<td>30 g (1.0 oz)</td>
</tr>
<tr>
<td>Power tool</td>
<td>30-40 g (1.0-1.4 oz)</td>
</tr>
<tr>
<td>Plug-in Hybrid 16 kWh</td>
<td>20 lbs</td>
</tr>
<tr>
<td>All Electrical Vehicle (EV) 25 kWh</td>
<td>50 lbs</td>
</tr>
</tbody>
</table>

Batteries in 2009: 24%

Batteries in 2015: 40%
Tesla proposes to produce more Li-ion batteries by 2020 than all other battery manufacturers combined.
Renewable Energy ≡ Politically Sexy

President Obama backs US lithium developers
By Marc Davis, www.BNWnews.ca, the environmental disaster in the Gulf of Mexico has served as an unnerving wake-up call for the industrialised world to confront its addiction to fossilised fuels. And it’s now providing President Obama and other G20 leaders with all the political impetus they need to usher in a new era of electric vehicles. "Many of the world’s top carmakers are far more reliant on clean battery-fuelled vehicles than on high-emissions petrol and diesel engines, that is why the White House is championing the mass adoption of lithium-ion batteries as the most efficient way to electrify motorised vehicles. In the United States, the US $78.1 billion in Federal stimulus funds that President Obama has promised to help President Obama accomplish his well-publicised mandate to usher in one million electric vehicles in the US by 2015.

Similarly, the leaders of other major industrialised nations are also rallying around such political and economic imperatives with their own multi-billion dollar incentives. That’s because rechargeable lithium-ion batteries are lighter and cheaper than conventional rechargeable nickel batteries. Notably, they are also much more powerful and have at least twice the energy density, as well as a longer operating life and other key advantages.

The lithium battery market is already worth over $4 billion annually, though this figure is mostly derived from its widespread use in portable electronic devices. However, the advent of green cars powered by batteries that use 20-50 pounds of lithium oxide is already creating a heightened demand for this new-age metal.

"the business world is already sold on the benefits of this invaluable new energy source"

Most importantly, the business world is already sold on the benefits of this invaluable new energy source, as its growing requirement to make a transition from fossil fuels to more eco-friendly energy. Moreover, the 2009 U.S. government report, "Green the Grid," and vehicles with electric and hybrid power will demand a steep rise in lithium sales. And some estimates suggest that as many as 250 million electric cars will be driven in the world in the next five years, as these emerging superpowers of China, India and Brazil.

Such milestone events are music to the ears of the world’s tiny handful of lithium miners and further limits in trying to satisfy a year-on-year exponential surge in demand for the world’s lithium: development companies that is rushing as fast as possible to capitalise on its burgeoning demand.

Such milestone events are music to the ears of the world’s tiny handful of lithium miners"

http://www.im-mining.com/2010/08/06/
Continental brine (58.4%)

Pegmatite (25.4%)

Hectorite (6.6%)

Geothermal brine (3.3%)

Jaderite (2.8%)

Other – such as… → … → … → … → …
Lithium-Rich Oilfield Formation Water

Jurassic Smackover brine, Arkansas and Texas, USA (50-572 ppm)

Permian Altmark gasfield, Germany (263 ppm)

Texas Cretaceous reservoirs (132-333 ppm)

Cretaceous Heletz-Kokhav, Israel (97-228 ppm)

North Dakota Devonian formations (100-288 ppm)

And the...

west-central Alberta area of the Western Canada Sedimentary Basin
Lithium in Alberta Formation Waters

(Initial findings based on a dataset comprising 130,000 analyses; Hitchon et al., 1993)

<table>
<thead>
<tr>
<th>Stratigraphic Unit</th>
<th>Lithium Max (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triassic</td>
<td></td>
</tr>
<tr>
<td>Baldonnel Fm.</td>
<td>60</td>
</tr>
<tr>
<td>Charlie Lake Fm.</td>
<td>68</td>
</tr>
<tr>
<td>Halfway Fm.</td>
<td>58</td>
</tr>
<tr>
<td>Montney Fm.</td>
<td>60</td>
</tr>
<tr>
<td>Permian</td>
<td></td>
</tr>
<tr>
<td>Carboniferous</td>
<td></td>
</tr>
<tr>
<td>Stoddart Gp.</td>
<td></td>
</tr>
<tr>
<td>Rundle Gp.</td>
<td>60</td>
</tr>
<tr>
<td>Banff Fm.</td>
<td>52</td>
</tr>
<tr>
<td>Devonian</td>
<td></td>
</tr>
<tr>
<td>Wabamun Gp.</td>
<td>115</td>
</tr>
<tr>
<td>Winterburn Gp.</td>
<td>90</td>
</tr>
<tr>
<td>Woodbend Gp.</td>
<td>140</td>
</tr>
<tr>
<td>Beaverhill Lake Gp.</td>
<td>130</td>
</tr>
<tr>
<td>Watt Mountain Fm.</td>
<td>98</td>
</tr>
<tr>
<td>Keg River Fm.</td>
<td>95</td>
</tr>
<tr>
<td>Lower Elk Point Gp.</td>
<td>71</td>
</tr>
<tr>
<td>Ordovician</td>
<td></td>
</tr>
<tr>
<td>Cambrian</td>
<td>81</td>
</tr>
</tbody>
</table>
Representative Beaverhill Lake (Swan Hills) and Woodbend (Leduc) formation water: in mg/L or ppm

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Leduc D-44</th>
<th>Swan Hills RCHAH110-676A</th>
<th>Leduc D-44</th>
<th>Swan Hills RCHAH110-676A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>130</td>
<td>130</td>
<td>120</td>
<td>115</td>
</tr>
<tr>
<td>Na</td>
<td>43200</td>
<td>54000</td>
<td>42400</td>
<td>39600</td>
</tr>
<tr>
<td>K</td>
<td>7500</td>
<td>5100</td>
<td>5000</td>
<td>4300</td>
</tr>
<tr>
<td>Mg</td>
<td>1610</td>
<td>2010</td>
<td>979</td>
<td>1630</td>
</tr>
<tr>
<td>Ca</td>
<td>18000</td>
<td>16900</td>
<td>27500</td>
<td>13600</td>
</tr>
<tr>
<td>Sr</td>
<td>725</td>
<td>630</td>
<td>615</td>
<td>/</td>
</tr>
<tr>
<td>Ba</td>
<td>5.7</td>
<td>19</td>
<td>4.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Cu</td>
<td>/</td>
<td>0.49</td>
<td>0.57</td>
<td>0.27</td>
</tr>
<tr>
<td>Zn</td>
<td>/</td>
<td>5.9</td>
<td>/</td>
<td>1.9</td>
</tr>
<tr>
<td>Pb</td>
<td>8.5</td>
<td>3.3</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Ag</td>
<td>/</td>
<td>1.3</td>
<td>1.5</td>
<td>0.92</td>
</tr>
<tr>
<td>Fe</td>
<td>/</td>
<td>0.85</td>
<td>0.89</td>
<td>0.36</td>
</tr>
<tr>
<td>Mn</td>
<td>14</td>
<td>14</td>
<td>0.38</td>
<td>9</td>
</tr>
<tr>
<td>V</td>
<td>/</td>
<td>0.8</td>
<td>0.9</td>
<td>0.28</td>
</tr>
<tr>
<td>As</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>B</td>
<td>2709</td>
<td>260</td>
<td>180</td>
<td>190</td>
</tr>
<tr>
<td>PO4</td>
<td>76</td>
<td>24</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>N/H</td>
<td>558</td>
<td>637</td>
<td>551</td>
<td>381</td>
</tr>
<tr>
<td>SiO2</td>
<td>54</td>
<td>43</td>
<td>88</td>
<td>19</td>
</tr>
<tr>
<td>F</td>
<td>6.7</td>
<td>6.2</td>
<td>/</td>
<td>4.7</td>
</tr>
<tr>
<td>Cl</td>
<td>117000</td>
<td>125100</td>
<td>123700</td>
<td>94160</td>
</tr>
<tr>
<td>Br</td>
<td>430</td>
<td>426</td>
<td>317</td>
<td>329</td>
</tr>
<tr>
<td>I</td>
<td>14</td>
<td>18</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>SO4</td>
<td>389</td>
<td>155</td>
<td>239</td>
<td>778</td>
</tr>
<tr>
<td>HCO3</td>
<td>365</td>
<td>232</td>
<td>1110</td>
<td>316</td>
</tr>
</tbody>
</table>

Saline formation water definition: salinity is >100,000 mg/L

Hitchon et al. (1993)
Devonian Woodbend Reefs

- Dolomite/limestone reef
- Evaporite
- Cooking Lake platform
- Oil pools
- Gas pools

Switzer et al. (1994)
Lithium Distribution in Alberta Formation Waters

Eccles and Jean (2010)
Hydrogeochemical-Based Approach

<table>
<thead>
<tr>
<th>Li-rich (80-122 mg/L)</th>
<th>Major-ion geochemistry</th>
<th>Strontium isotopes</th>
<th>Lead isotopes</th>
<th>Lithium isotopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>13</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Li-poor (10-43 mg/L)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

- **Li-rich** (80-122 mg/L)
- **Li-poor** (10-43 mg/L)

Li dataset
- 100-140 mg/L
- 50-100 mg/L
- <50 mg/L

Basement (general region)
samples from R. Burwash
(biot-plag-micro-hbld-gn)

<table>
<thead>
<tr>
<th>Li-richer (80-122 mg/L)</th>
<th>Li-poorer (10-43 mg/L)</th>
<th>100-140 mg/L</th>
<th>50-100 mg/L</th>
<th><50 mg/L</th>
</tr>
</thead>
</table>

Eccles and Berhane (2011)

- 3 3 3

Eccles and Jean (2010)

- 3 3 3
Seawater Evaporation Trajectory from Fontes and Matray (1993)

This study
- Li-rich (80-112 mg/L)
- Li-poor (10-43 mg/L)

AGS Li dataset
- 100-140 mg/L
- 50-100 mg/L
- <50 mg/L
Seawater Evaporation Trajectory from Fontes and Matray (1993)

This study
- **Li-rich (80-112 mg/L)**
- **Li-poor (10-43 mg/L)**

AGS Li dataset
- **100-140 mg/L**
- **50-100 mg/L**
- **<50 mg/L**

Cooking Lake Platform

Seawater Evaporation Trajectory from Fontes and Matray (1993)
Schematic Evolution of Devonian to Tertiary Formation Waters in West-Central Alberta.

Michael and Bachu (2001)

\[
\text{(Na}^+_{\text{brine}} + \text{Ca}_{\text{feldspar}}) = \text{Ca}^{2+}_{\text{brine}} + \text{Na}_{\text{feldspar}}
\]
This study
- Li-rich (80-112 mg/L)
- Li-poor (10-43 mg/L)

AGS Li dataset
- 100-140 mg/L
- 50-100 mg/L
- <50 mg/L

Albitization
Evaporation
Dilution

Michael and Bachu (2001)
\[\text{Na}^+_{\text{(brine)}} + \text{Ca}_{\text{(feldspar)}} = \text{Ca}^{2+}_{\text{(brine)}} + \text{Na}_{\text{(feldspar)}} \]

This study
- Li-rich (80-112 mg/L)
- Li-poor (10-43 mg/L)

AGS Li dataset
- 100-140 mg/L
- 50-100 mg/L
- <50 mg/L

Ca-Na exchange
SET
Seawater
Evaporation

Eccles and Berhane (2011)
\[\text{Na}^+_{(\text{brine})} + \text{K}^+_{(\text{feldspar})} = \text{K}^+_{(\text{brine})} + \text{Na}^+_{(\text{feldspar})} \]

This study
- Red circles: Li-rich (80-112 mg/L)
- Light blue squares: Li-poor (10-43 mg/L)
- Green area: AGS Li dataset
 - 100-140 mg/L
 - 50-100 mg/L
 - <50 mg/L

Eccles and Berhane (2011)
Lithium ↔ lithophile connection with → Potassium

- Granitic and gneissic basement rocks (biotite, muscovite, microcline, nepheline, orthoclase)
- Lepidolite – lithium mica in pegmatite
- Sulfates associated with sulfides/fumaroles (alunite)
- Secondary/diagenetic/low-grade metamorphic processes (illite, kalinite, glauconite)
- Evaporites (polyhalite, sylvite, carnallite)
Considerations for Introducing Li

- Precipitation of halite containing late-stage evaporation cycle impurities (Li, K)
- Volcanic and/or hydrothermal activity
- Interaction between Li-bearing siliciclastics and brine
- Contribution from local aquifer rocks (dolomitization)
- Contribution from a freshwater source
Tectonometamorphic Elements in Play

Precambrian basement structure contour, Peace River Arch (Trotter, 1989)

Magnetic data with vertical shadowgram Lyatsky et al. (2005)
Tectonic Elements with Reef Outlines and Li
Mobilization of Lithium along ‘Tectonic/Lithological Highways’

Limestone

Hydrothermal dolomite

Gillwood Ss

Cambrian Ss and Granite Wash

KIA

Fault

Eccles and Berhane (2011)
2600 to 3500 m below surface
O&G production formation water/brine challenges:

- May require multi-processing to recover additional oil
- May require treatment for producing and injection zone compatibility
- High salinity, and therefore, corrosive
- Represents the largest-volume waste stream associated with O&G production
Swan Hills Production Well: May 1972 to present

- Water
- Gas
- Oil

10,000 m³/month
Outline

• Lithium 101
• Lithium-Brine in Alberta
 ➢ History of Discovery
 ➢ Significance of Spatial Location within Alberta
 ➢ Theory – Source of Lithium in Alberta Brine
 ➢ Lithium–Brine Availability to Surface Explorers
• Mineral Resource Example: Canadian International Minerals Inc.
 ➢ Formation Water Sampling and Results
 ➢ NI 43-101 Mineral Resource Estimate
Lithium staking in Alberta

Historical + Current Interest

AmeriLithium Corp.
Black Creek Mineral Corp.
Channel Resources Ltd.
Canadian International Minerals Inc.
Canasia Industries Corp.
Consolidated Spire Ventures Ltd.
Dahrouge Geological Cons. Ltd.
Empire Rock Minerals Inc.
First Lithium Resources Inc.
Habanero Resources Inc.
Headwater Min. Expl. Dev. Ltd.
Lithium Exploration Group Inc.
MGK Consulting Inc.
MGX Minerals Inc.
Ultra Lithium Inc.
West Star Resources Corp.
CIN Sturgeon Lake Lithium Brine Project

Sturgeon Lake Reef Complex
Woodbend Group (Leduc)

Sturgeon Lake Oil Pools
Oil and Gas Companies
Dissolved constituents:
- sodium
- potassium
- calcium
- magnesium
- barium
- strontium
- lithium
- Chloride
- bromide
- boron
- iodide
- sulphate
- sulphide
- silica
- inorganic carbon
- pH
- Density
- Specific conductance
- Etc.
Lithium Distribution in Woodbend (Leduc) Brine

Up to 84 mg/L (84 ppm)

Up to 74 mg/L (74 ppm)

Potassium potentially economic exploration threshold values = 75 ppm
Hitchon et al. (1995)
Potassium Distribution in Woodbend (Leduc) Brine

Up to 6,470 mg/L (6,470 ppm)

Up to 5,280 mg/L (5,280 ppm)

Potassium potentially economic exploration threshold values = 10,000 ppm

Hitchon et al. (1995)
Bromine Distribution in Woodbend (Leduc) Brine

Up to 470 mg/L (470 ppm)

Up to 500 mg/L (500 ppm)

Bromine potentially economic exploration threshold values = 3,000 ppm
Hitchon et al. (1995)
Boron Distribution in Woodbend (Leduc) Brine

Up to 137 mg/L (137 ppm)

Up to 125 mg/L (125 ppm)
Woodbend (Leduc) Brine vs Other Brine Ages
Brine mineral deposits are unique and complex because:

- Standards for mineral resource estimates apply predominantly to solid state mineral resources, not to fluids

Preparation of a Resource Estimate and ensuing Technical Report requires:

- Participation of a variety of Qualified Persons with relevant experience in brine geology such as geologists, hydrogeologists and geochemists; and
- Disclosure of results must reflect the input of the entire team.
Mineral Resource Estimation

1) Total In-Place Formation Water (Within Property)
- Acquire and review stratigraphic picks and create surface grids to calculate the net volume of rock
- Review core analysis and sonic logs (delta transit time) to assign a regional porosity value
- Review production data to estimate net brine (e.g., % saline brine vs oil % vs gas %)

2) Average Mineral Grades

<table>
<thead>
<tr>
<th></th>
<th>Lithium (mg/L)</th>
<th>Potassium (mg/L)</th>
<th>Boron (mg/L)</th>
<th>Bromine (mg/L)</th>
<th>Calcium (mg/L)</th>
<th>Magnesium (mg/L)</th>
<th>Sodium (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>47.0</td>
<td>47.0</td>
<td>47.0</td>
<td>47.0</td>
<td>47.0</td>
<td>47.0</td>
<td>47.0</td>
</tr>
<tr>
<td>Min</td>
<td>55.4</td>
<td>3950.0</td>
<td>92.4</td>
<td>330.0</td>
<td>19800.0</td>
<td>2300.0</td>
<td>52200.0</td>
</tr>
<tr>
<td>Max</td>
<td>83.7</td>
<td>6470.0</td>
<td>137.0</td>
<td>500.0</td>
<td>28100.0</td>
<td>4630.0</td>
<td>71400.0</td>
</tr>
<tr>
<td>Median</td>
<td>66.5</td>
<td>4440.0</td>
<td>112.0</td>
<td>390.0</td>
<td>23000.0</td>
<td>2580.0</td>
<td>61300.0</td>
</tr>
<tr>
<td>Average</td>
<td>67.5</td>
<td>4641.3</td>
<td>114.0</td>
<td>394.3</td>
<td>23595.7</td>
<td>2887.4</td>
<td>62385.1</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>5.5</td>
<td>505.1</td>
<td>11.7</td>
<td>33.2</td>
<td>2120.7</td>
<td>537.6</td>
<td>4596.1</td>
</tr>
<tr>
<td>RSD%</td>
<td>8.1</td>
<td>10.9</td>
<td>10.3</td>
<td>8.4</td>
<td>9.0</td>
<td>18.6</td>
<td>7.4</td>
</tr>
</tbody>
</table>

*RSD% = standard deviation/mean*100
CIN Inferred Mineral Resource Estimation

Based on: 1) Total in-place formation water volume of 5.7 Billion m³; and 2) Average grades taken from a 2011 sampling program (n=47)

<table>
<thead>
<tr>
<th></th>
<th>Lithium (Li)</th>
<th>Potassium (K)</th>
<th>Boron (B)</th>
<th>Bromine (Br)</th>
<th>Calcium (Ca)</th>
<th>Magnesium (Mg)</th>
<th>Sodium (Na)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average grade (mg/L)</td>
<td>67.5</td>
<td>4,641.3</td>
<td>114.0</td>
<td>394.3</td>
<td>23,595.7</td>
<td>2,887.4</td>
<td>62,385.1</td>
</tr>
<tr>
<td>Resource in place (tonnes)</td>
<td>385,000</td>
<td>26,455,000</td>
<td>650,000</td>
<td>2,248,000</td>
<td>134,495,000</td>
<td>16,458,000</td>
<td>355,595,000</td>
</tr>
<tr>
<td>Resource in place (tons)</td>
<td>424,000</td>
<td>29,162,000</td>
<td>716,000</td>
<td>2,477,000</td>
<td>148,256,000</td>
<td>18,142,000</td>
<td>391,976,000</td>
</tr>
<tr>
<td>Oxides (tonnes)</td>
<td>Li₂CO₃ 2,049,000</td>
<td>K₂O 31,868,000</td>
<td>B₂O₃ 2,093,000</td>
<td>Br₂ 2,248,000</td>
<td>CaO 188,185,000</td>
<td>MgO 27,291,000</td>
<td>NaCl 903,922,000</td>
</tr>
</tbody>
</table>

Mineral resources that are not mineral reserves do not have demonstrated economic viability.

The quality and grade of reported inferred resource in this estimation are uncertain in nature and there has been insufficient exploration to define these inferred resources as an indicated or measured mineral resource, and it is uncertain if further exploration will result in upgrading them to an indicated or measured resource category.

Eccles et al. (2016)
Hypothetical Recoverability Discussion

Lowering the formation water level in the Leduc Formation aquifer, especially as the result of fluid withdrawal, will form a drawdown effect.

Ultimately drawdown will include fluids from outside the Property boundary.

Necessary to include discussion on what influence the hydraulic parameters have on resource extraction and overall brine recoverability.
Available Drawdown

Any dewatering evaluation must account for hydraulic parameters:

- Permeability
- Transmissivity (permeability x aquifer thickness)
- Storativity (the volume of water expelled per unit surface area as a result of a change in head)

Using effective transmissivity and corresponding storativity, we adjust the hypothetical well locations and pumping rates in the aquifer model until the calculated water levels represent close to 100% available drawdown within the boundaries of the Property.
Hypothetical Diversion and Recoverability

Using the aquifer model and 100% drawdown, hypothetically calculate:

- A range of recoverable volumes
 E.g., by pumping 33,500 m3/day from 14 wells for 20 years; and for a range of transmissivity values (from DST’s, core analysis and formation water modeling)

- Volume of water that is pumped from within (and outside) the Property boundary

- A ‘range’ of the estimated Inferred Mineral Resource that could potentially be recovered
Other Considerations

For example, total in-place formation water volume of 5.7 Billion m³

At 100% drawdown within the Property boundaries, approximately 176 million m³ could be sufficiently and theoretically pumped over a 20 year period

Transmissivity measurements vary → hence hypothetical recoverable brine volumes could range between 71.8 million m³ and 258.5 million m³.

However! The final tonnage of each element is ultimately controlled by element recoverability, which is impacted by advances in element recoverability technology; aquifer pressure testing; and/or reinjection variables.

On another note - the regulatory policy of ‘mining’ these formation waters might resemble that of oil and gas leases, where operational boundaries are not based on an actual lease of rock, but are defined by the pool or aquifer.

Therefore, the inferred recoverable mineral resource represents a best case recoverable resource and the estimates come with a large uncertainty.
The key to unlocking Alberta’s lithium wealth lies in discovering an efficient cost effective brine process recoverability route.
Encouraging baseline recoveries (evaluating a variety of extraction methods):

- Over 95% of the lithium to an intermediary compound
- Up to 88% elemental bromine
- Up to 100% of the boron as sodium borate
- Approximately 40% potassium as carnallite salt

<table>
<thead>
<tr>
<th>Element</th>
<th>Recovery</th>
<th>Product</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium</td>
<td>Up to 50%</td>
<td>Lithium chloride</td>
<td>Solvent extraction</td>
</tr>
<tr>
<td>Potassium</td>
<td>40%</td>
<td>Carnallite</td>
<td>Staged evaporation</td>
</tr>
<tr>
<td>Bromine</td>
<td>88%</td>
<td>Bromine</td>
<td>Chlorination/steam stripping</td>
</tr>
<tr>
<td>Boron</td>
<td>>95%</td>
<td>Sodium borate</td>
<td>Solvent extraction/sodium hydroxide stripping</td>
</tr>
</tbody>
</table>
Ultrasonic Cavitation
With permission from Lithium Exploration Group, April, 2012
Round Two of Recoverability Testing Starts Now...!
Lithium (et al.) Potential of Alberta

It’s green, it’s politically inspiring, it’s like turning brine into wine...

...and it could become a metal producer in Alberta

Thank you!

D. Roy Eccles
reccles@apexgeoscience.com